
VU Research Portal

Improving Solution Architecting Practices

Poort, E.R.

2012

document version
Publisher's PDF, also known as Version of record

Link to publication in VU Research Portal

citation for published version (APA)
Poort, E. R. (2012). Improving Solution Architecting Practices. [PhD-Thesis - Research and graduation internal,
Vrije Universiteit Amsterdam].

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

E-mail address:
vuresearchportal.ub@vu.nl

Download date: 13. Mar. 2024

https://research.vu.nl/en/publications/1373ba32-3030-4819-bea8-015a02e5bb3a

8
Architecting as a Risk- and Cost

Management Discipline

We propose to view architecting as a risk- and cost management discipline. This point

of view helps architects identify the key concerns to address in their decision making,

by providing a simple, relatively objective way to assess architectural significance.

It also helps business stakeholders to align the architect’s activities and results with

their own goals. We examine the consequences of this point of view on the architecture

process, and give some guidance on its implementation, using examples from practicing

architects trained in this approach.

8.1 Introduction

As mentioned in the introduction to this thesis, the notion of “software architecture”

is one of the key technical advances in the field of software engineering over the last

decades [Farenhorst and de Boer, 2009]. In that period, there have been two distinct

fundamental views as to the nature of architecture:

1. Architecture as a higher level abstraction for software systems, expressed in

components and connectors [Shaw, 1990, Perry and Wolf, 1992].

2. Architecture as a set of design decisions, including their rationale [Kruchten,

1998, Jansen and Bosch, 2005, Tyree and Akerman, 2005].

View 1 is about “the system-level design of software, in which the important deci-

sions are concerned with the kinds of modules and subsystems to use and the way these

modules and subsystems are organized” [Shaw, 1990]. View 1 is focused on the choice

121

CHAPTER 8. ARCHITECTING AS A RISK- AND COST MANAGEMENT

DISCIPLINE

and organization of components and connectors, but practicing architects’ decisions

appear to have a much wider range.

View 2, architecture as a set of design decisions [Jansen and Bosch, 2005], is more

generic and has been beneficial to both the architecture research community and its

practitioners [Tyree and Akerman, 2005]. This view of architecture implies a view of

architecting as a decision making process, and likewise a view of the architect as a

decision maker.

In recent years, this view of architecture and architecting has been especially ben-

eficial in promoting insight into architectural knowledge management: among other

results, it has led to new insights into the structure of what architects need to know and

document to make their decisions [Tyree and Akerman, 2005, Ivanović and America,

2010a], and it has stimulated research into re-usable architectural decisions [SHARK,

2009, Zimmermann et al., 2007]. Both these avenues of research have devoted much

attention to structure and tooling, but so far there is limited focus on what the architect’s

decisions should be about beyond components and connectors.

We propose to view architecting as a risk- and cost management discipline. In

other words, the important things architects should make decisions about are those

concerns that have the highest impact in terms of risk and cost. Of course, risk and

cost have always been important drivers in architecture [Kazman et al., 2002], but

our point of view goes a step further than this obvious point: we see risk- and cost

management as the primary business goal of architecting. All architecture activities

such as architecture documentation, evaluation and decision making are in essence

ways to fulfill this business goal.

As we will see in this chapter, considering architecture as a risk- and cost man-

agement discipline, rather than merely as a high-level design discipline, makes the

architect more effective in a number of ways:

• It helps the architect order their work, in both focus and timing of their decision

making.

• It helps in communicating about the architecture with stakeholders in business

terms.

The rest of this chapter is structured as follows:

• In §8.2, we will show how we arrived at this point of view of what architecture

is all about, and define some key concepts.

• In §8.3, we will elaborate on the meaning of risk and cost and how they determine

architectural significance.

122

8.2. WHAT ARE ARCHITECTURAL DECISIONS ABOUT?

• Then in §8.4, we will examine how viewing architecture as a risk- and cost man-

agement discipline impacts the architecting process and helps architects in the

focus and timing of their decision making.

• In §8.5, we will use three examples from industry to illustrate how this approach

helps to communicate architectural significance to stakeholders.

• In §8.6, we will give some guidance on how to implement this point of view.

• We conclude the chapter with a discussion, including some frequently asked

questions about this approach.

8.2 What are Architectural Decisions About?

For years, we have been talking and writing about software architecture as a set of de-

sign decisions [Kruchten, 1998, Jansen and Bosch, 2005, Tyree and Akerman, 2005].

Hence, the topic of an architect’s decisions is supposedly software design. If we take

the slightly more inclusive accepted view of software architecture as the architecture

of software-intensive systems [ISO 42010, 2011], this view of the world sees a soft-

ware architect as someone who makes design decisions about software-intensive sys-

tems. On further scrutiny, this qualification appears to be too generic: not all design

decisions about software-intensive systems can be called architectural. For example,

programmers make minor design decisions whenever they are writing code, which are

manifestly not architectural: if they were, every programmer would be called an archi-

tect.

An often heard distinction is that architects operate at a higher level of abstrac-

tion than designers or programmers [Shaw, 1990]. This certainly appears to be true

of architects who operate mainly by establishing design principles. Many architects,

however, do much more than that, all the way down to prescribing details of particular

coding practices that they deem architecturally significant [Fowler, 2003].

Let’s see if the international standard definition of software architecture [ISO 42010,

2011] helps: “fundamental concepts or properties of a system in its environment em-

bodied in its elements, relationships, and in the principles of its design and evolution”.

Going back to the example of our programmer and his daily minor design decisions,

these can certainly be about the properties of the system, its elements and their relation-

ships. The programmer’s decisions may also affect the system’s evolution. There are

only two concepts in the ISO 42010 definition that are clearly out of the league of the

programmer’s decisions: “fundamental” and “principles”. These concepts can guide us

towards the class of decisions architects should focus on: decisions about fundamental

123

CHAPTER 8. ARCHITECTING AS A RISK- AND COST MANAGEMENT

DISCIPLINE

things and principles. Ralph Johnson, quoted by Martin Fowler [Fowler, 2003], makes

a similar statement in less formal words: “Architecture is about the important stuff.

Whatever that is.”

In the last few years, the authors have started to equate “the important stuff” with

“the stuff that has the most impact on risk and cost”. In other words, architects focus

on concerns that involve high risk and cost, and architectural decisions are those deci-

sions that have significant impact on risk and cost. This view is a joint understanding

that has come into being after five years of seeing IT architects at work on dozens of

diverse complex solutions, and after extensive discussions with the architects and their

stakeholders on what should be the focus of an architect’s work. It has so far been

beneficial in several ways:

First, it helps architects organize their workflow by giving them a relatively objec-

tive way of prioritizing concerns and determining when to make decisions. How it does

this is explained in §8.4.2 and §8.4.3 below.

Furthermore, it helps architects discuss architectural significance with business

stakeholders in terms that they all understand: risk and cost. This is explained in §8.5.

8.2.1 Key concepts

“Concern” and “Decision” are key concepts throughout this chapter. Concern is a well-

understood, established concept: [ISO 42010, 2011] uses the term concern to mean any

topic of interest pertaining to the system. Concerns originate from stakeholders’ needs:

this makes them “of interest” in the ISO42010 definition. A decision is a choice by

the architect amongst alternatives. The architect makes decisions to Address (fulfill,

satisfice, handle) concerns. The SEI’s Attribute-Driven Design [Bass et al., 2003] is

an example of decision-making where you choose from tactics to address a quality

attribute concern. Some examples of architectural concerns from our experience:

• How to fulfill the requirement to instantly revoke a user’s authorization, even in

the middle of a session?

• How to implement required UI elements that are not supported by HTML?

• How to fulfill the response time criteria?

• When to upgrade to the new version of the application server platform?

• Which workflow engine to use?

• Whether or not to virtualize our server landscape?

As we can see from these examples, concerns can usually be phrased as a question,

and it is the architect’s task to decide on the answer to that question, thereby addressing

the concern. Sometimes the concern is an open question, e.g.: “How to fulfill the

124

8.2. WHAT ARE ARCHITECTURAL DECISIONS ABOUT?

Figure 8.1: Key concept model.

client’s security requirement?”. Other times the concern is a closed question, e.g.:

“Should we buy component A or build it ourselves?” or “Should we use thin or fat

client technology?”. The closed questions are usually elaborations of previous open

questions, narrowing down the answer space after some research. We can usually see

the decisions taking shape in these closed-question concerns: they point to a choice to

be made between a number of alternatives. The word “concern” also has a connotation

of “worry”, and this is no coincidence: architects worry about fulfilling the concerns.

They would like to prioritize the concerns that they worry most about, and consider

those the most significant concerns at any point in time.

Several models exist linking design decisions to concerns [de Boer et al., 2007,

Jansen and Bosch, 2005, ISO 42010, 2011]. [de Boer et al., 2007, Jansen and Bosch,

2005] represent the Concern-Decision relationship as a 1-to-n association that crosses

other entities like “alternative” or “solutions”, even though in our experience, archi-

tectural decisions regularly address more than one concern at the same time. For our

purposes, these other entities are not needed, so like [ISO 42010, 2011] we simplify

and generalize them to Fig. 8.1.

In our model, we see Stakeholders in three important relationships: as the origin

of concerns, as the party that bears the cost of implementing decisions, and as the

victim bearing the risk of wrong decisions. Please note that these are independent

associations: the stakeholder paying for the implementation or suffering the risk of

a wrong decision is not necessarily the same Stakeholder from whom originates the

concern that the decision is addressing.

The final concept we would like to define here is Architectural Significance. This

is an attribute of Concern. It is the key concept used in this chapter to describe the

125

CHAPTER 8. ARCHITECTING AS A RISK- AND COST MANAGEMENT

DISCIPLINE

amount of attention the architect should pay to a particular concern.

8.3 Architectural Significance in Terms of Risk and

Cost

In §8.2, we stated that architects focus on concerns that involve high risk and cost.

In this section, we make this statement more exact: the architectural significance of

concerns can be represented by their cost and risk level.

Below, we present an approach for roughly quantifying the architectural signifi-

cance of a concern. The purpose of quantifying the architectural significance of con-

cerns is to be able to order them, so that architects can direct their attention to the most

significant concerns as explained in §8.4. It should be noted that architects in industry

mostly follow their gut-feeling and experience, supported by checklists and templates,

for assessing what is architecturally significant, and that in our experience this assess-

ment is usually strongly related to risk and cost. The formulas presented below are

primarily a conceptual tool, a vehicle to explore the relationships between architectural

concerns and decisions, and their architectural significance in terms of cost and risk.

The usage of the formulas in practice is limited to those occasions where an architect

feels the need to validate their gut feeling of architectural significance by a rough quan-

tification, or needs to justify their prioritization towards business stakeholders in broad

economic terms.

The principle on which our approach is based is this: the architectural significance

of a concern can be represented by the budget an organization would have to reserve

to address that concern, including cost contingency, or:

AS(C) = Cost(C) +Risk(C)

In this formula, AS(C) represents the quantified architectural significance of con-

cern C. Cost(C) is the estimated cost of addressing the concern, as explained in

§8.3.2. Risk(C) is the total expected cost of “things going wrong” associated with C

as explained in §8.3.1: the cost contingency.

An example of how this principle would be used to assess the architectural sig-

nificance of a performance concern Cperf : Cost(Cperf) would represent the cost of

addressing the concern, including the cost of designing and engineering work specif-

ically aimed at achieving the required performance, performance testing and tuning,

and cost of any tools used in this work. Risk(Cperf) would then be the cost contin-

gency associated with the risk of not properly addressing the concern - this term will

be elaborated in §8.3.1.

126

8.3. ARCHITECTURAL SIGNIFICANCE IN TERMS OF RISK AND COST

The formula represents architectural significance in terms of money. Apart from

giving us a way to order concerns, it also gives us an idea of the maximum economic

benefit that can be achieved by architectural activities related to these concerns. If

the cost of these activities grows beyond this maximum benefit, it clearly makes no

sense to continue them: they are not architecturally significant. A special case of this,

regarding the cost of quantification of quality attributes, is presented by [Glinz, 2008].

Spending more resources on addressing concerns than is warranted by their impact in

terms of risk and cost is a waste. Such concerns are clearly not architectural. Using risk

level to determine what an architect should do, and especially not do, is the basis of

Fairbanks’s risk-driven model [Fairbanks, 2010]; we add cost as an equally prominent

factor to consider.

8.3.1 Risk

A Risk is something that may go wrong. Traditional architecting activities control risk

in a number of ways, both before and after committing to an architectural decision:

1. Gathering information (before committing), reducing the uncertainty of a wrong

architectural decision by e.g. architectural prototyping or architectural analysis.

2. Risk-mitigating design, using architectural strategies and tactics that reduce the

impact of change after committing, such as loose coupling and abstraction lay-

ering.

3. Documenting architectures, reducing the probability of misunderstanding archi-

tectural requirements and/or decisions.

4. Evaluating architectures, reducing the probability of wrong architectural deci-

sions by having the architecture reviewed against critical criteria before commit-

ting.

The quantified definition of risk in this chapter is the risk exposure relationship

used by Barry Boehm [Boehm, 1991]:

Risk(F) = p(F)× I(F)

in which F is a particular failure scenario, p(F) is the perceived probability of F oc-

curring, and I(F) is the estimated impact of F . When thinking about risks, normally

cost is not the only impact if things go wrong: other impacts should not be forgotten,

such as the impact of failure on delivery time or stakeholder satisfaction. When cal-

culating risk exposure, all impact needs to be somehow converted to financial impact.

127

CHAPTER 8. ARCHITECTING AS A RISK- AND COST MANAGEMENT

DISCIPLINE

The reason we are talking about perceived probability and estimated impact is because

the architect, at the time of architecting the solution, can never determine the actual

probability and impact of failure.

We state that risk is an important factor in determining which concerns an archi-

tect should focus on. To be able to do this and quantify the risk aspect of a concern,

the architect must tie architectural concerns to failure scenarios. Most concerns have

inherent failure scenarios; this is what architects worry about. The most generic fail-

ure scenario related to a concern is “not addressing the concern”, a failure to meet the

stakeholders’ needs underlying the concern. Sometimes obligation to meet the concern

is formalized in an agreement (e.g. a Service Level Agreement), with related specified

penalties: in those cases the direct financial impact to the supplier is equal to those

penalties (but there may also be indirect impact, like reputation damage). Sometimes

the impact is harder to express financially, like loss of life when not meeting a safety

concern.

Once we have identified all independent failure scenarios related to a concern and

estimated their associated probability and impact, we can determine the concern’s fi-

nancial risk impact by simply adding the financial risks of these scenarios. This calcu-

lation is exactly the same as calculating a project’s required contingency budget based

on its risk register [AACE, 2000], which we do not have to explain here.

An important aspect the solution architect should take into account is that stake-

holders have different interests in risks, related to the difference of the scope of their

stake in the solution. Stakeholders each have their own interests: a project manager

will be mostly interested in the risks that impact project success, while a security offi-

cer will be more interested in risks that impact security, which usually occur only after

the project has delivered the solution and the project manager has been discharged.

This difference could be made visible in the model described above by making the im-

pact estimate of failure scenarios stakeholder-dependent. One can then choose to add

the risk exposure of all stakeholders, or to filter out the impact related to less critical

stakeholders. What this tells us, is that the architectural significance of a concern is

stakeholder-dependent, and architects have to be able to deal with diverging stakeholder

views on which concerns are more critical to deal with. Many architects working in a

project context feel an inherent responsibility for the lifetime of the system, extending

beyond the project’s end. The approach presented here gives them a way to quantify

differences in stakeholder interests.

Risk example

Returning to our example performance concern Cperf above: failure scenarios are

those turns of events in which the solution fails to meet the performance criteria, e.g.

128

8.3. ARCHITECTURAL SIGNIFICANCE IN TERMS OF RISK AND COST

the response times of a web application are too slow. Three examples failure scenarios

for the web application that is too slow:

F1 The hosting platform is underdimensioned.

F2 The connection between the hosting platform and the internet is too slow.

F3 The number of web-users exceeds expectations.

The architect has to assess these risks at design time – more precisely, at the time

she is ordering the concerns to be addressed. F1 and F2 are design or construction

“errors”: the architect assesses the probability p(F1) and p(F2) of such errors based

on her experience with similar solutions, probably taking into account the available

budget, technical parameters and uncertainty. The impact of such construction errors

I(F1) and I(F2) consists of the damage and repair costs. Damage is caused by e.g.

contract penalties in the Service Level Agreement and/or users turning away from the

system because of its unresponsiveness. Repair costs are the costs of adding hardware

and/or bandwidth.

The architect assesses the probability of the number of web-users exceeding expec-

tations p(F3) based on available knowledge of the uncertainty in the projected numbers

of users. The impact I(F3) of this scenario again consists of damage and “repair” costs:

“repair” perhaps being a strange term here, because the solution itself is not broken: it

is just being overused, and needs to be expanded.

The total risk exposure then consists of adding the individual scenario’s exposures:

p(F1)× I(F1) + p(F2)× I(F2) + p(F3)× I(F3).
Once again, these calculations are not usually made in practice to any level of detail:

they should be considered a conceptual tool, and applied in a manner commensurate

with the objective of determining architectural significance. The architect usually con-

siders only one or two failure scenarios that dominate the concern, and prioritizes based

on rough order-of-magnitude impact assessments.

Decision risk

Apart from the risk of not addressing concerns, architects worry about another type of

risk: the risk of making wrong architectural decisions. When generating a concern’s

failure scenarios, we should include scenarios in which the decisions addressing the

concern turn out to be wrong. The two types of risk are closely related, and one could

argue that a failure to address a concern is simply a failure to make the right decisions

to address it. In [Poort and van Vliet, 2011] we presented a simple formula based on

this argument, but we will delve a bit deeper here.

129

CHAPTER 8. ARCHITECTING AS A RISK- AND COST MANAGEMENT

DISCIPLINE

What is a “wrong decision”? It is when we choose A when B would have been

better, or vice versa. “Better” meaning e.g.: costing less in terms of time and money, or

resulting in a solution that better fulfills requirements. A failure scenario related to an

architectural decision, expressed in its most generic terms, is: it turns out we made the

wrong decision. We denote this failure scenario F related to decision D by FD→wrong .

It is important to understand that “wrong” is not an attribute of a decision; “wrong

decision” is simply a shorthand way of expressing a scenario. In such a scenario, the

failure can be due to all kinds of internal and external factors, unforeseen events etc.,

which “it went wrong” pertains to. Hence, the word “wrong” does not necessarily

qualify the architect’s work when making the decision.

Let’s look at an example concern from the software architecture world: keeping

java objects in an application server in sync with the corresponding records in a rela-

tional database (RDB). This is known as the O/R mapping problem, and several tools

and techniques exist to address it: use of the Hibernate tool, use of entity beans, hard-

coded SQL, etc. We will base a small thought experiment on this concern. For sim-

plicity’s sake, let’s state that the O/R mapping problem can be addressed by one archi-

tectural decision: the decision to choose one of the available tools or techniques. The

failure scenarios are those that inhibit the solution’s quality attributes like maintainabil-

ity, data integrity, performance etc. Depending on the context and what happens in the

future, a decision to hard-code SQL statements to populate java objects could turn out

to be wrong. The resultant close coupling of the java code with the RDB data model

and technology could cause excessive effort to be needed for changes, violating a mod-

ifiability requirement. We cannot know this at design time; all we can do is assess the

probability p(FD→wrong) and the impact I(FD→wrong) of this failure scenario. This is

not trivial, since the impact depends on when the failure is determined. If the situation

goes undetected it will harm the stakeholders by driving up the cost of changes. If it is

detected before the “wrong” solution can do any damage, the project team would still

have to re-factor the code, and the impact of the wrong decision ultimately translates

to the total cost of this re-factoring to the stakeholders, including the re-factoring effort

and any additional costs caused by the subsequent delay in delivery of the solution.

This is in effect the cost of reversing the architectural decision.

This thought experiment illustrates a general point: the impact of a wrong decision

usually involves both the cost of reversing the decision and the potential damage to

the stakeholders if it is not reversed, or until it is reversed. In any case, the cost of re-

versing an architectural decision is an important factor in its architectural significance.

When using cost and risk to determine architectural significance, design decisions that

are expensive to reverse tend to be more architectural. This gives a theoretical ba-

sis to Fowler’s qualification of architecture as “things that people perceive as hard to

change.” [Fowler, 2003]. It also resonates strongly with [Klusener et al., 2005], who

130

8.4. IMPACT ON ARCHITECTING PROCESS

state that “the software architecture of deployed software is determined by those as-

pects that are the hardest to change.”

8.3.2 Cost

Cost is the amount of money spent on something. The formula for estimating the cost

of addressing a concern is:

Cost(C) =
∑

DεDA(C)

Cost(D)

where DA(C) is the set of decisions addressing concern C, and Cost(D) is the esti-

mated cost of implementing decision D. There are many documented ways to estimate

cost in software engineering (e.g. [Boehm, 1981]), which we will not discuss here. Risk

factors must be excluded from this cost estimate, to prevent double-counting risks into

the architectural significance function AS(C) above. Once again, we are not suggest-

ing to use this formula to determine architectural significance in practice; it is presented

to clarify our view on architectural significance.

It should be noted that concerns and design decisions have an n-to-m relationship:

design decisions often address multiple concerns, so that adding costs calculated this

way for multiple concerns C1 and C2 will cause double-counting for decisions that

address both concerns in DA(C1) ∩ DA(C2). Since we are only interested in deter-

mining the cost-factor in architectural significance, we are not planning to add costs of

different concerns, so this is no problem here.

Just like with risk, the solution architect should always realize that stakeholders

have different interests in costs, related to the difference of the scope of their stake

in the solution. Hence, a project manager will be mostly interested in project costs,

while a business owner may be more interested in the Total Cost of Ownership (TCO).

Depending on the solution architect’s context, her architectural decisions may effect

TCO, project costs or both. So both the cost and the risk element of architectural

significance are shown to be stakeholder-dependent.

8.4 Impact on Architecting Process

We will now examine the impact of the risk- and cost management view of architecture

on the architecting process. In the previous sections, we have discussed the importance

of managing risk and cost in architecture, and presented a method for ordering concerns

by architectural significance. In this section, we will show how this ordering can be

131

CHAPTER 8. ARCHITECTING AS A RISK- AND COST MANAGEMENT

DISCIPLINE

used to optimize an architecting process so that it becomes better at controlling risk

and cost.

As a reference architecting process, we once again use the generic approach docu-

mented in [Hofmeister et al., 2007]. We have already encountered this paper in Chap-

ter 6: it compares five industrial approaches to architectural design, and extracts from

their commonalities a general software architecture design approach.

The approach involves three activities, and a workflow that reflects the fact that the

three activities are not executed sequentially.

8.4.1 Architecting activities

The generalized architecting activities are:

1. Architectural analysis: define the problems the architecture must solve. This

activity examines architectural concerns and context in order to come up with a

set of Architecturally Significant Requirements (ASRs).

2. Architectural synthesis: the core of architecture design. This activity proposes

architecture solutions to a set of ASRs, thus it moves from the problem to the

solution space.

3. Architectural evaluation: ensures that the architectural design decisions made are

adequate. The candidate architectural solutions are measured against the ASRs.

Of these three activities, the one that is most impacted by the risk- and cost man-

agement view of architecture is architectural analysis. The basis of this analysis are

the solution’s context and architectural concerns. Viewing architecting as a risk- and

cost management discipline sheds light on which concerns are architectural: those that

have high impact in terms of risk and cost. This addition necessarily implies that risk

and cost assessment becomes part of the architectural analysis activity. This applies

not only to the concerns to be addressed, since the impact in terms of risk and cost is

transferred to the Architecturally Significant Requirements (ASRs) resulting from the

analysis. In [Hofmeister et al., 2007], the ASR definition is borrowed from [Obbink

et al., 2002]: “a requirement on a software system which influences its architecture”. In

risk- and cost driven architecting, the ASRs are likely the most sensitive requirements

in terms of risk and cost.

8.4.2 Architecting workflow

In [Hofmeister et al., 2007], the authors describe an “apparently haphazard process” in

which architects maintain, implicitly or explicitly, a “backlog of smaller needs, issues,

132

8.4. IMPACT ON ARCHITECTING PROCESS

problems they need to tackle and ideas they may want to use. The backlog drives the

workflow, helping the architect determine what to do next.” Hofmeister et al. make

clear that the backlog typically consists of architectural concerns but also other types

of items, and that it is constantly re-prioritized using various prioritization tactics. They

mention risk as one of the mostly external forces driving priority; others are team or

stakeholder pressure or perception of greater difficulty.

When talking to architects, many of them indicate that this is where most of the

added value of the risk- and cost driven view on architecting is. It helps them better

organize this apparently haphazard backlog process by giving them a clear measure of

priority: prioritizing by risk and cost.

In §8.3, we have only discussed determining the architectural significance of Con-

cerns. Backlog items typically take the form “We need to make a decision about X.” or

“We should look at Y in order to address Z.”[Hofmeister et al., 2007]. The fact that not

all of the backlog items are formally architectural concerns is not a problem in practice,

as long as the team is not too religious about the definitions. As long as the backlog

items can reasonably be expressed in terms of risk and cost, the prioritization works.

One important thing to realize here is that A has higher priority than B does not

necessarily imply A must be addressed before B. The backlog is not a strict picking

order. Rather, it helps to identify the top n items to be addressed at a particular point in

time, where usually n = 5±2. This seems to be a rather unsophisticated approach, but

as we will see in the next section, the risk management aspect of architectural decision

making allows us to further analyze the timing aspect.

We saw in the previous section that the architecting activity that is most directly

impacted by the risk- and cost management view of architecture is architectural anal-

ysis. The architecting workflow, however, drives all architecting activities, including

some that are not mentioned in Hofmeister et al.’s generalized approach, such as ar-

chitecture implementation and maintenance. Through the architecting workflow, the

risk- and cost management view of architecture permeates into those activities as well.

For example: in the architecture documentation activity, the views that should be doc-

umented first are those that are associated with concerns that have high impact in terms

of risk and cost.

8.4.3 Architectural decisions and the flow of time

When discussing risk and time, an important aspect is that the nature of the risk of a

wrong decision D changes at the moment that we commit to the decision. Until that

moment, the primary failure scenario is “the architect will make a wrong decision”;

after that moment, the failure scenario changes to “the architect has made a wrong

decision”. The difference seems trivial, but is not, as we will see in this section.

133

CHAPTER 8. ARCHITECTING AS A RISK- AND COST MANAGEMENT

DISCIPLINE

Figure 8.2: Decision risk factors over time.

The time at which to address architectural concerns is influenced by their risk-

related character. We have seen in §8.3.1 that the risk related to an architectural decision

is the product of the probability of a wrong decision and the impact of a wrong decision,

and that an important component of the second factor is often the cost of reversing the

decision. Generally, the influence of time on these factors depends on the moment

of committing to a decision, as is illustrated in Fig. 8.2. In this figure, we see the

probability that a decision D turns out wrong represented by a line, the impact of D

being wrong by another line, and the moment tD of committing to decision D as a

vertical line:

• After the moment of decision, the cost of reversing an architectural decision,

and with it the impact of it being wrong, will increase over time as it is being

implemented.

• Until the moment of decision, the probability of a wrong architectural decision

decreases over time as more information becomes available.

• Once we start implementing the decision, still more information will become

available, but because we are already committed to it, it will not necessarily

134

8.5. STAKEHOLDER COMMUNICATION

reduce the probability of D having been wrong. This is represented by the shaded

triangular area.

The shaded triangle requires some explanation. It is caused by the emerging in-

formation during the implementation of decision D, which can be either good or bad

news:

• If all goes well, the probability of the decision having been wrong P (D →

wrong) decreases, and the probability line will continue to go down. But what-

ever happens, the impact of D having been wrong will increase. The resulting

risk may still either go up or down, depending on the rate of increase of the

impact. R(D) = P (D → wrong) × I(D → wrong) may either decrease or

increase.

• If the emerging information points more and more in the direction of D having

been wrong, both P (D → wrong) and I(D → wrong) will increase, so R(D)
will certainly increase.

Assuming that the cost estimate of implementing D remains stable, this implies

that the architectural significance of the concern C that D is designed to address may

increase after we have made the decision.

Looking at architecting as a risk- and cost management discipline, we have to con-

clude that it is important for architects to continue to pay attention to the concerns they

have made decisions about, because their architectural significance may yet increase.

An extreme example of this is that sometimes concerns that did not seem architectural

at the time of architecting, in running systems turn out to be architectural after all. So,

risk- and cost driven architecting leads us to extend the list of architectural activities

designed to control risks at the beginning of §8.3.1 with another activity: monitoring

architectural concerns after committing to decisions to address them. The economic

impact of monitoring decisions and resolving uncertainty over time has been analyzed

extensively by several authors [Biffl et al., 2006] using decision trees and real-option

theory.

8.5 Stakeholder Communication

Many stakeholders, especially business managers, are not used to thinking and talking

in terms of levels of abstraction or components and connectors. Part of the architect’s

job is to translate architectural concerns and decisions into terms that stakeholders un-

derstand [Clements et al., 2007]. One substantial advantage of expressing architectural

135

CHAPTER 8. ARCHITECTING AS A RISK- AND COST MANAGEMENT

DISCIPLINE

significance in terms of risk and cost is that they are universal terms that most stake-

holders can relate to. These terms smooth communication between architect and stake-

holders, and gives the architect a relatively objective measure to explain priorities to

stakeholders. We already saw the importance of objectivity in stakeholder communi-

cation about solution architecture in the SMSC case study in Chapter 5. In §8.5.1, we

will list some more examples from practice of architectural concerns and how they can

be expressed in terms of risk and cost to facilitate stakeholder communication.

Apart from the level of individual concerns, we are also experiencing that viewing

architecting as a risk- and cost management discipline is improving business managers’

understanding of the overall value of architecture and architects. Managers routinely

understand the value of risk mitigation and cost control. When these are presented as

the primary business goals of architecture, we find that this makes business managers

more comfortable assigning often highly-paid [Money Magazine, 2010] architects to

projects or product organizations.

8.5.1 Examples from practicing architects

In this section, we will present some examples from real projects1, presented to us

by the architects trained in the Risk- and Cost Driven Architecture approach. These

examples highlight the risk and cost aspects of typical real-life architectural concerns:

• Application Server platform A large, business critical product application with

a substantial java-based web interface is extensively customized and parameter-

ized before being put in production. The development team is using the Open

Source JBoss application server platform to develop the customizations. The

target production platform is a Commercial Off-The-Shelf (COTS) application

server. At a certain point in time, the development platform will also have to

start using the target COTS application server. The architectural concern is the

timing of this move. Moving the development platform to the “heavier” COTS

application server too early will cause loss of efficiency and entail extra costs in

the development team. Moving too late carries the risk of finding application-

server specific issues too late, maybe forcing some refactoring that could have

been avoided. The primary business stakeholder initially was not interested in

this concern: according to his knowledge, J2EE application servers were stan-

dard and the move should be trivial. The architect had the important challenge

of making the business stakeholders aware of the risk and cost aspects of the

concern.

1All examples are from real projects; due to company confidentiality constraints, the examples have been

abstracted away from their specific project context.

136

8.6. IMPLEMENTING THE RISK- AND COST DRIVEN VIEW OF

ARCHITECTING

• Role-based Interface A web site has been designed and presented to the business

stakeholders. In the design, the user only sees functionality that she is authorized

for. Architectural concern is that users can switch roles during a session, which

is not supported by the COTS portal platform in use (roles are cached during the

session). Time to solve this issue is very limited. Several alternative solutions are

considered: asking the portal supplier for help is risky, because it will take a long

time and there is no guarantee for success. Alternatively, users can be required

to log out and back in when they switch roles; this is low-risk, but makes the

system less efficient, raising costs on the user side. In this example, making the

risks and costs explicit helps the stakeholder make the right trade-off.

• Web and SOA access channels A large java-based application is being devel-

oped. The system will have a broker-like role, connecting various small and

large companies, at widely varying levels of IT sophistication. The system is

required to offer much of its functionality both as a web-based user interface

(for small, low-IT companies) and as SOAP web-services (for larger companies

with more sophisticated IT). At the time of designing the system, it is unclear

what the distribution across these access channels will be in the near future; it

might even change substantially during the time the system is being built. Key

architectural decisions to address this concern are whether or not to build a com-

mon abstraction layer for both the web- and web-services interfaces on top of the

business layer, and what mechanism to use to expose the common functionality

to web-services. Costs are the development cost of the abstraction layer, the li-

cense and configuration costs of COTS web service integration packages. The

key risks are jeopardizing performance by the abstraction layer, putting a lot of

effort in access channels that might hardly be used by the time of deployment,

and inconsistencies in business rules across the access channels.

8.6 Implementing the Risk- and Cost Driven View

of Architecting

After elaborating the theoretical implications of viewing architecting as a risk- and

cost management discipline in the previous sections, we will now focus on the practical

implications for the architect’s activities. We will do this in the form of a list of guiding

principles that the architect can apply to their way of working. This guidance is mostly

independent of the particular flavor of architecting process used.

In order to improve the effectiveness of their work in terms of risk and cost control,

architects should adhere to the following guidelines:

137

CHAPTER 8. ARCHITECTING AS A RISK- AND COST MANAGEMENT

DISCIPLINE

• Make risk- and cost assessment part of architectural analysis. This is a prerequi-

site to the other guidelines in this list, and implies that architect’s skill set should

include risk management and cost estimation.

• Create and maintain a list of architectural concerns and order them by risk and

cost. The top 3-7 items on this list are the most architecturally significant, the

concerns that the architect should focus on at any point in time. Apart from

helping the architects in their projects, this has the additional benefit of creating

a stored history of architectural concerns across multiple projects and architects,

which can be analyzed for lessons learned.

• Regularly monitor the key architectural concerns. Keep in mind that the archi-

tectural significance of a concern may increase after the concern has initially

been addressed by architectural decisions.

• Communicate about architectural concerns and decisions with business stake-

holders in terms of risk and cost. Architects should explicitly link their priorities

to the business context of their stakeholders, keeping in mind the purpose of

doing architecture in the first place: to manage risk and cost.

• Get involved in the program’s risk register. This is a special case of the previous

guideline, where the stakeholder is the project or programme manager. The ar-

chitectural concerns all imply risks and hence should be represented in the risk

register, and the activities to address the concerns are the associated risk mitiga-

tion measures.

• Report progress in terms of risk and cost control. The extent to which architec-

tural concerns are under control is a good measure of the progress made during

the architectural design phase of a project. The primary deliverables of an ar-

chitect are the architectural decisions that increase control, and the architect’s

progress should be tracked on those deliverables (rather than e.g. the chapters of

the architectural blueprint).

• Stop architecting when the impact gets too low. Spending more resources on

addressing concerns than their impact in terms of risk and cost warrants is a

waste. Such concerns are clearly not architectural. Don’t do more architecture

than is strictly necessary [Malan and Bredemeyer, 2002]. Architects invariably

have a limited amount of time and they should spend it addressing concerns with

the most pressing risks [Fairbanks, 2010] and cost.

138

8.7. CONCLUSIONS AND DISCUSSION

8.7 Conclusions and Discussion

In this section, we will discuss related work. We will also briefly discuss a number of

questions that were frequently raised when teaching the approach to practicing archi-

tects. We will close with our main conclusions.

8.7.1 Related work

Risk in software architecture

Attention to risk is fairly ubiquitous in software development. A state of the art

overview of risk management in software development is given in [Bannerman, 2008].

The importance of risk analysis in software development is aptly phrased by Tom

Gilb [Gilb, 1988]: “If you don’t actively attack the risks, they will actively attack you”.

Most of this literature does not specifically focus on software architecture. One class

of papers and books discusses a variety of risks associated with software development,

from requirements volatility to staff turnover. Often, checklists are proposed to system-

atically investigate a large number of such risks [Boehm, 1991]. Some of the questions

posed may relate to the software architecture, such as “Does any of the design de-

pend on unrealistic or optimistic assumptions?” or “Are you reusing or re-engineering

software not developed on the project?” [Costa et al., 2007]. Another class of papers

discusses sophisticated techniques for computationally handling risks, using Bayesian

networks, fuzzy set theory, and the like; [Lee, 1996] is an example hereof. A third type

of articles focuses on conceptual models for handling risk in software development.

Process models, such as the spiral model [Boehm, 1988], explicitly pay attention to

risk analysis as one of the early process steps, to identify areas of uncertainty that are

likely to incur risks and next identify strategies to resolve those risks at an early stage.

Elsewhere, risk analysis is used to select an appropriate process model; for instance,

[Boehm and Turner, 2004] uses risk analysis to choose between agile and plan-driven

development models.

Attention to risks in software architecture is most prominent in software architec-

ture evaluation. For instance, one of the outputs of the Architecture Tradeoff Analysis

Method (ATAM) [Bass et al., 2003] is a list of risks and non-risks. By studying the

output of a series of such ATAM evaluations, [Bass et al., 2007] were able to reveal

and analyze risk themes specifically geared towards software architecture. [Slyngstad

et al., 2008] provide results of a survey amongst software architects to identify risk and

risk management issues in software architecture evaluations. One of the lessons they

draw is that lack of software architecture evaluation is itself a potential risk.

139

CHAPTER 8. ARCHITECTING AS A RISK- AND COST MANAGEMENT

DISCIPLINE

Risk and cost in decision making

Viewing risk and cost as drivers in architecture decision making has led to approaches

like the Cost Benefit Analysis Method (CBAM) [Kazman et al., 2002] and the Archi-

tecture Rationalization Method (ARM) [Tang and Han, 2005] that relate architectural

decisions to the benefits they bring to an organization, studies that emphasize business

implications of architectural decisions [Clements et al., 2007], and approaches that

consider architectural decisions as investment decisions [Biffl et al., 2006, Ivanović

and America, 2010b].

[Feather et al., 2008] use risk and cost as a driver in requirements decision making.

In their defect detection and prevention (DPP) approach, they introduce risk as the

primary driver for deciding which requirements to fulfill. Architectural strategies to

address the requirements are represented as risk mitigation measures in the model; this

may look a bit convoluted, but is fully in line with our view of architecture as a risk

management discipline. The cost of (partly) fulfilling a requirement is obtained by

adding the cost of all selected mitigation measures for the associated risks.

[Fairbanks, 2010] introduces the Risk-Driven Model, whose aim is to do just enough

architecture, based on the risks identified. The method is directed at the overall plan-

ning of architectural activities, rather than individual decisions taken during architect-

ing. It also does not treat cost as an explicit factor in prioritizing architectural activities.

Decisions in software development, architecture, buying stock, and many other

fields, are made by humans. These decisions often are not purely rational; human deci-

sions are influenced by prior knowledge, time pressure, short term memory, and so on.

[Simon, 1969] coined the term bounded rationality to denote our limited capabilities

for making rational decisions. Sometimes, a third type of rationality is distinguished

next to pure rationality and bounded rationality: social/cultural rationalism. There, it is

recognized that decision making often is a group process, and the interaction between

the decision makers affects the outcome. The different perspectives of the participants

may bring new insights and solutions.

When people take decisions, they attach gains and losses to the possible outcomes.

If the outcomes are not certain, we may distinguish between four prospects:

1. A high probability of a gain, as in a 95% chance to win $ 1000 (and a 5% chance

to win nothing), against 100% chance to win $ 950.

2. A high probability of a loss, as in a 95% chance to lose $ 1000, against 100%

chance to lose $ 950.

3. A low probability of a gain, as in a 5% chance to win $ 1000, against a 100%

chance to win $ 50.

140

8.7. CONCLUSIONS AND DISCUSSION

4. A low probability of a loss, as in a 5% chance to lose $ 1000, against a 100%

chance to lose $ 50.

Seminal research by Kahneman and Tversky on this type of decision making has led to

what is known as prospect theory, and the fourfold pattern described above [Kahneman

and Tversky, 1979, Kahneman, 2011]. It turns out that people behave in a risk averse

manner in situations 1) and 4). In situation 1, one prefers a sure gain and does not

gamble. In situation 4, one accepts a small loss and does not risk the chance of a large

loss. In situations 2) and 3), people behave in a risk seeking way. In situation 2), one

tends to gamble and hope for the 5% chance that no loss is incurred. In a similar vein,

the hope for a large gain makes people opt for the 5% chance to do so in situation 3).

Note that in all four cases, the standard Bernouilli theory results in the same utility for

both options ($ 950 in cases 1) and 2), $ 50 in cases 3) and 4)).

The same risk averse/risk seeking behavior is to be expected in decision making

in software development projects. One typical example is the continuation of projects

that only have a very small chance to ever succeed (situation 2) in the above scheme.

Requirements prioritization

There is a strong resonance between the approach presented here and the extensive lit-

erature on requirements prioritization methods (RPMs). The main differences between

our approach and RPMs are in the object and the goal of prioritization:

• RPMs prioritize requirements on the solution, whereas we prioritize stakeholder

concerns. These two concepts are related, but they are not the same: concerns are

addressed by architectural decisions, requirements are implemented in the solu-

tion. One stakeholder concern usually leads to multiple solution requirements,

and one requirement can address multiple stakeholder concerns.

• RPMs determine the delivery order of requirements, whereas we help the archi-

tect determine the order in which she pays attention to concerns.

A well-known requirements prioritization principle comes from the Agile Mani-

festo [Agile Alliance, 2001]: “Our highest priority is to satisfy the customer through

early and continuous delivery of valuable software”. Thus, many RPMs use business

value as the main prioritizing factor [Gilb, 2005], but often other factors are also taken

into account, such as return on investment (RoI) [Kazman et al., 2002, Regnell et al.,

2008] and risk (mainly in security-oriented requirements engineering [Herrmann et al.,

2010]). Our failure scenarios in §8.3.1 are strongly related to the Misuse Cases found

141

CHAPTER 8. ARCHITECTING AS A RISK- AND COST MANAGEMENT

DISCIPLINE

in MOQARE [Herrmann and Paech, 2008]. Based on priority, RPMs allocate require-

ments to deliver iterations in software projects, or releases in product roadmaps. [Her-

rmann and Daneva, 2008] examines 15 RPMs, and analyzes their use of benefit and

cost as prioritizing factors. [Racheva et al., 2010] derives a conceptual model for re-

quirements prioritization in an agile context based on 19 RPMs. The model identifies

five requirements prioritizing aspects for stakeholders: Business Value, Risk, Effort

Estimation/ Size Measurement, Learning Experience, and External Change. We recog-

nize the two main themes of this chapter: Risk and Cost. For a discussion on Business

Value in architecting, please refer to the next section. For architects, the other two

factors are an integral part of their architecting process: External Change is usually

handled as a modifiability concern and a risk factor, while Learning Experience is the

means by which architects address uncertainty in the solution domain, using practices

like architectural prototyping.

Architects should be aware of both the differences and the similarities between

RPMs and risk- and cost based architecting. The similarities mean that the RPM pri-

oritization techniques can help architects prioritize their concerns. The differences

are equally important: an architect should not focus exclusively on high priority re-

quirements in terms of delivery order, since requirements scheduled for later delivery

may have high impact on the architecture, and prove very risky if ignored. As stated

in [Abrahamsson et al., 2010], “certain classes of systems that ignore architectural is-

sues for too long hit a wall and collapse due to a lack of an architectural focus.”

8.7.2 Frequently Asked Questions

The topics in this section were raised by the architects we trained in the Risk- and

Cost Driven Architecture approach. Since they led to interesting discussions, we are

presenting them here.

What about existing systems?

What does our view on architecture mean for existing systems, i.e. systems after their

initial delivery? Since we already know how the architectural decisions made during

the design phase turned out, does it still make sense to talk about the risk of making

wrong decisions? It does: just like during the design phase, the architectural activi-

ties related to existing systems have risk and cost management as their prime business

objective. Typical activities at this stage are architecture recovery, evaluation and archi-

tectural modifications to the system. The reason an architect gets involved is to identify

architecturally significant concerns related to something that the stakeholders want to

do with this system; most likely, modify it in some way. And once again, what is archi-

142

8.7. CONCLUSIONS AND DISCUSSION

tecturally significant is determined by risk and cost impact, and decisions need to be

made to address these concerns, e.g: do we refactor a component that is hard to change?

Do we port the system to another platform? [Klusener et al., 2005], in their extensive

paper on modifying existing systems, come to a very similar notion of architectural

significance in those systems, as we have seen in §8.3.1. [Slyngstad et al., 2008] have

surveyed risks in software architecture evolution, and present the most common risks

for architectures of existing systems and their associated mitigation activities.

What about value?

One might argue that a solution’s value to its stakeholders should play at least as im-

portant a role as the risk and cost of delivering it. In practice, we find that solution

architects are less concerned with stakeholder value, especially when they operate in a

project context. This is because most value considerations have already been taken into

account in the solution’s goals and business requirements, which serve as input to the

project. This process of pre-determining the value of a solution by fixing its high-level

requirements is usually considered part of the requirements analysis rather than the ar-

chitecting phase of a solution’s lifecycle, and is often largely completed even before

the solution architect gets involved. A frequently occurring example of this situation

is when a supplier architects a solution in response to a Request for Proposal (RfP):

the RfP documentation contains requirements that encapsulate the requested solution’s

business value. As long as the architected solution fulfills these business requirements,

the value objective is considered to be fulfilled, and it is the architect’s job to fulfill

the RfP requirements at the lowest possible cost. We even see that solutions that add

stakeholder value beyond the previously captured requirements are often regarded with

suspicion. The management jargon for this situation is “gold-plating”, and it has strong

negative connotations. However, as we have seen in Chapter 3, there are dangers asso-

ciated with determining value-based requirements without taking the architecture into

account.

In practice, there are two types of situations where solution architects are involved

in stakeholder value discussions:

1. When the solution architect is involved in the analysis work. A good example

of this is the Cost Benefit Analysis Method [Kazman et al., 2002], a method for

performing economic modeling of software systems, centered on an analysis of

their architecture. Another example is the requirements convergence planning

practice presented in Chapter 3.

2. Creating value for “internal” stakeholders in the delivery project, such as the

developers and the project manager. Examples are architectural decisions that

143

CHAPTER 8. ARCHITECTING AS A RISK- AND COST MANAGEMENT

DISCIPLINE

create re-usable components or make the solution’s construction more efficient.

In this situation, the value actually consists of cost savings, reinforcing the point

that the architect’s work is cost-driven.

In short, when architectural features or requirements are prioritized in order to de-

termine what to build in a solution, value plays an important role. The focus of solution

architecting in this chapter, however, is on how to build a solution, and then risk and

cost trump value.

As explained above, [Kahneman, 2011] finds that people are prepared to take high

risks if there is a chance for a high gain, even if such a choice is not rational. Our ap-

proach raises the profile of risks and costs in the trade-off against value, and one would

expect that this would help to prevent irrational architectural decisions in high-risk situ-

ations. It would be interesting to validate this expectation by presenting architects with

high-risk, high-gain architectural decision scenarios and analyzing differences in re-

sponses depending on their training and their knowledge of expected short-term gains.

Does this mean architects always have to minimize risks?

Risk and cost are used to assess the architectural significance of concerns, and should

play a role in trade-offs between decisions addressing these concerns. This does not

automatically mean that architects or stakeholders should always select the architec-

tural alternative with the lowest risk: that is up to them entirely, and depends on other

factors such as the risk-averseness of the culture in their organization. What it does

mean is that these risks should be made explicit and considered in the trade-off.

8.7.3 Conclusion

We have presented and elaborated a view of solution architecting as a risk- and cost

management discipline. Although this view is an extension of pre-existing views on

software architecture, it goes beyond software architecture alone: it includes other

architecture genres, captured under the name Solution Architecture as described in

§1.2.1.

The risk- and cost driven view on architecture is the basis for the architecting ap-

proach presented in the following chapter: Risk- and Cost Driven Architecture. It is

part of a solution architecture training programme that has so far been taught to 159

architects, many of whom have claimed that it helps them become more effective in

their jobs. These claims are supported by anecdotal evidence, some of which we have

presented here. In Chapter 9, we will further substantiate the claims.

144

8.7. CONCLUSIONS AND DISCUSSION

In conclusion, viewing architecture as a risk- and cost management discipline helps

architects and stakeholders in focusing their activities on high-impact concerns, and in

doing so raises the value of architecture to organizations.

145

